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The absence of suitable single crystals of some biopolymers
has encouraged structural chemists to partially orient such
molecules with electric, magnetic, or flow fields,2 by dissolution
in liquid crystals or stretched gels,3 and as monolayers.4 Since
it is often found that guests in crystals are oriented by the host
lattice,5 and that proteins are found within single crystals of
biominerals,6 it seemed possible that we might effectively isolate
and orient biopolymers in suitable crystalline host matrices in
the laboratory. Such mixed crystals might be used to analyze
spectral anisotropies in biological molecules that could not
otherwise be crystallized. Herein, we demonstrate the incor-
poration and orientation of proteins and an oligonucleotide in
host aromatic acid crystals using three imaging techniques:
fluorescence microscopy/spectroscopy, single-crystal desorption
mass spectrometry, and autoradiography. This work is part of
our continuing study of extra-ordinary solid solutions, mixed
crystals with guests bearing no size, shape, nor constitutional
similarity to the host molecules or ions.7 Most relevant is our
recent analysis of phthalic (1) and sinapic (2) acid crystals that
have oriented and isolated dyes in particular sectors during
growth from solution.8

Dye-labeled biopolymers were prepared to monitor their
presence in host crystals1 and2. The proteins cytochromec

(C), aprotinin, bovine serum albumin, lysozyme, and myoglobin
were covalently labeled with theN-hydroxysuccinimide esters
of the dyes rhodamine (r ) or fluorescein (f) and then purified
by gel filtration. Millimeter-sized crystals of1 or 2were grown
at room temperature from solutions containing the labeled
proteins.9 A surprising number of the resulting mixed crystals
showed patterns of elliptically polarizedr or f emissions that
were consistent with growth sectors (Figure 1a).10 The most
absorptive growth sectors for1 and2 were{021} and{103h},
respectively.11 The molar ratio of organic host acid to dye-
labeled protein within the mixed crystals was approximately
104 as determined by nitrogen analysis and colorimetry. These
results indicated to us that proteins can be routinely isolated in
sub-millimolar concentrations within simple molecular crystals.12

Single crystals of213 containing proteins were analyzed by
MALDI-MS. 14 The intensities of the protein signals in the mass
spectra were highly dependent upon that region of the crystal
irradiated with the focused nitrogen laser. Irradiation of2Cr
(notation indicates sinapic acid crystals containing rhodamine-
labeled cytochromec) on the largest, uncolored{010} facets
produced weak protein signal that increased 20-fold when beam
spilled over the edges of the crystal associated with the colored
{103h} growth sectors.
To ensure that the dye labels were not responsible for

directing the inclusion of the proteins into the matrix,15we grew
1 in the presence of14C-radiolabeled cytochromec ([14C]C,
Sigma)without the covalently bound dye. Indeed, autoradio-
grams of these crystals also showed an hourglass pattern
associated with the{021} growth sectors (Figure 1b).16

Fluorescence anisotropy measurements indicated that the
included proteins were oriented within the host crystals. For
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Figure 1. (a) Photomicrograph of1Cr under UV illumination and
viewed along [010]. Horizontal dimension is 1 mm. (b). Autoradiogram
of 1[14C]C upon which is superimposed the idealized habit of the crystal
that produced it. Graininess is limited by film resolution.
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1Cr observed normal to the (010) face (Figure 1a),λem was
586 nm (λex 530) and the major axis of the elliptically polarized
emission was parallel to the slow vibration direction.17

To establish that these facially selective adsorption phenom-
ena were not restricted to proteins, we carried out the single-
crystal matrix isolation of an oligonucleotide, Dickerson’s
dodecamer (D)18 in 1. D was bound to acridine (a) using a
functionalized controlled pore glass and the standard phos-
phoramidite methodology.19 Crystals of1Da showed a highly
anisotropic blue fluorescence associated with the{021} growth
sectors (Figure 2). Here, the major axis of the elliptically
polarized emission in the (010) face was parallel to thefast
vibration direction.
Since the orientations of the fluorescent labels were not fixed

with respect to the biopolymers, it was desirable to study guest
molecules with intrinsic luminophores. Therefore, Fe-free
porphyrin cytochromec (Cp) was prepared by reaction with
HF.20 Crystals of1Cp, grown at room temperature by water
evaporation, gave rise to the luminescence spectrum shown in
Figure 3. Emission from the Q-band, bright in the{021} and
{010} sectors, has a tripartite structure which most resembles
emission from monoprotonated free porphyrins.21 Total ratios
of the fluorescence of the Q-band polarized in orthogonal
directions in the{010} and {111} faces were 2.7 and 1.6,
respectively.
We examined the circular dichroism (CD) ofC in saturated

solutions of 1 prior to crystallization.22 The CD spectrum
associated with the Q-band ofC is sensitive to denaturation
with urea and heat but insensitive to saturating concentrations
of 1. One may conclude from these observations thatC

maintains its folded state prior to association with the{021}
face of growing crystals of1.
Dyes in crystals have been found in a variety of aggregation

states, and presumably, varied growth conditions would present
both isolated and aggregated biopolymers in single crystals.
Measurements of the lifetimes of the luminesence of1Cr, 1Cp,
and 1 containing bothCp and Cr23 provided no definitive
evidence for Fo¨rster energy transfer.24

The{021} faces of phthalic acid project carboxyl groups and
aryl rings directly from the surface in alternating rows.25 Such
a surface structure does not lend itself to a straightforward
characterization of the recognition mechanism as hydrophobic
nor hydrophilic in nature. Moreover, emergent secondary
surface structures, not characterized at this time, may be essential
in directing absorption phenomena.
Our previous investigations of organic dyes in simple ionic

crystals indicated the formation extra-ordinary solid solutions
required a rare stereochemical match between guest and host
surface.7 We were therefore surprised at the frequency and ease
with which we could find evidence for oriented biomolecules
in 1 and 2. On the other hand, it is well-known, and often
problematic, that biopolymers tenaciously adhere to a variety
of surfaces.26 And, Addadi and co-workers have shown that
proteins can attach to specific crystal faces, as surmised from
the influence of insulin antibodies on the morphology of insulin
crystals.27 The burgeoning field of MALDI-MS provides further
evidence that biopolymers are often contained within single
crystals.12 Now, our challenge is to address specific structural
questions about oriented bioguests in simple single crystals,
while devising experiments to define the recognition mecha-
nisms.
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Figure 2. Luminescence of1Cp for exciting light polarized along the
orthogonal directions shown in leftmost inset. Vertical crystal dimension
in photomicrograph is 1 mm.

Figure 3. Luminescence of1Da for exciting light polarized along the
orthogonal directions shown in leftmost inset. Vertical crystal dimension
in photomicrograph is 1 mm.
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